

IEA Bioenergy 2012 | November 13 - 15, 2012 | Vienna

Conversion routes to cellulosic alcohol

Proving second generation processes in practical demonstration

Markus Lehr VOGELBUSCH Biocommodities GmbH | Vienna | Austria

Contents

Footnotes to VOGELBUSCH
Showcase project INBICON
Showcase project INEOS Bio
Special downstream processing solutions
Conclusions

Biocommodities = white biotechnology We make biotechnology work.

we make bloteermology work

- Since 1921 independent
- Located in Vienna, Austria, Hong-Kong and Huston, TX
- Bioprocess plants for the sugar, starch and food industries
- From raw material preparation to final product
- Proprietary technology
 - 📂 alcohol | bioethanol
 - 🚩 vinegar
 - 🚩 yeast
 - 🗲 organic acids
 - 🚩 starch sugars

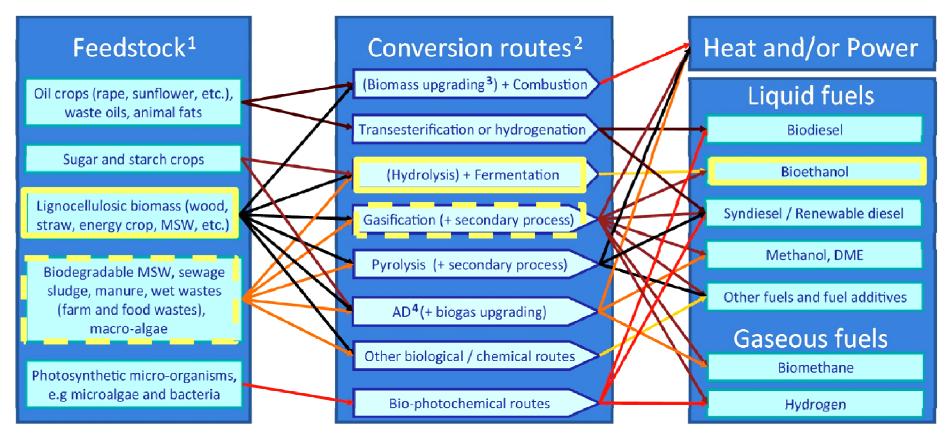
VOGELBUSCH Biocommodities

Process design of alcohol plants since 1921

- Some 40 plants in the late 1970ies/early 1980ies in Brazil, first African bioethanol plant in 1983 (Kenya)
- 36 bioethanol plants since 1981 in North America, China, Europe with a total annual capacity of 5 million tons
- First with largest bioethanol plants on three continents
- Technology supplier to major producers, e. g.
 - Jilin Fuel Ethanol
 - Abengoa Bioenergy
 - Cargill
 - Südzucker (CropEnergies)

Second generation ethanol | VOGELBUSCH experience

Complementing client's 2G process with proven bioethanol technology


- Process design for pilot and demonstration plants
- Assist in developing fermentation and separation strategies
- Equipment supply for separation, distillation and dehydration

Examples:

- demo plant of INBICON | DK
- demo plant of IOGEN | CD

pilot plant ABENGOA BIOENERGY | US pilot plant of MITSUI/SIME DARBY | MY commercial plant INEOS Bio | US

Biorefineries

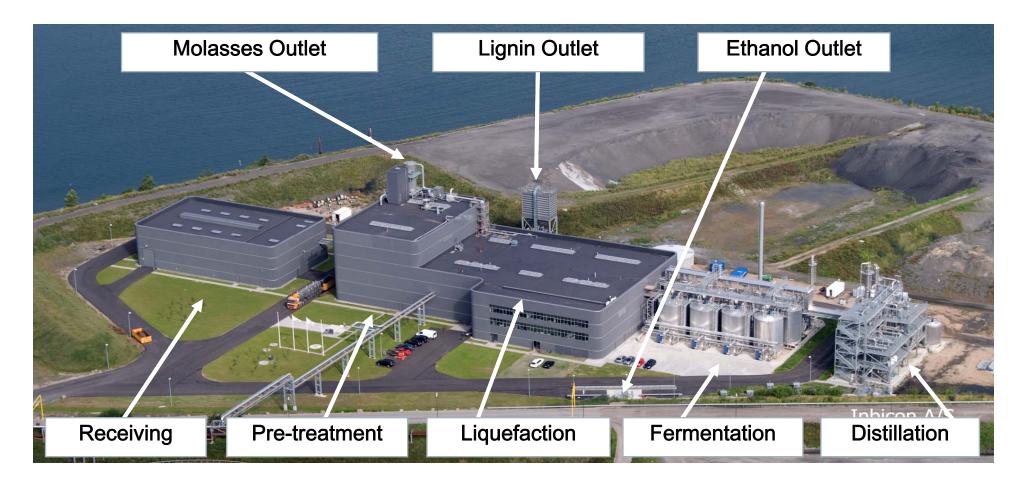
¹ Parts of each feedstock, e.g. crop residues, could also be used in other routes

² Each route also gives co-products

³ Biomass upgrading includes any one of the densification processes (pelletisation, pyrolysis, torrefaction, etc.)

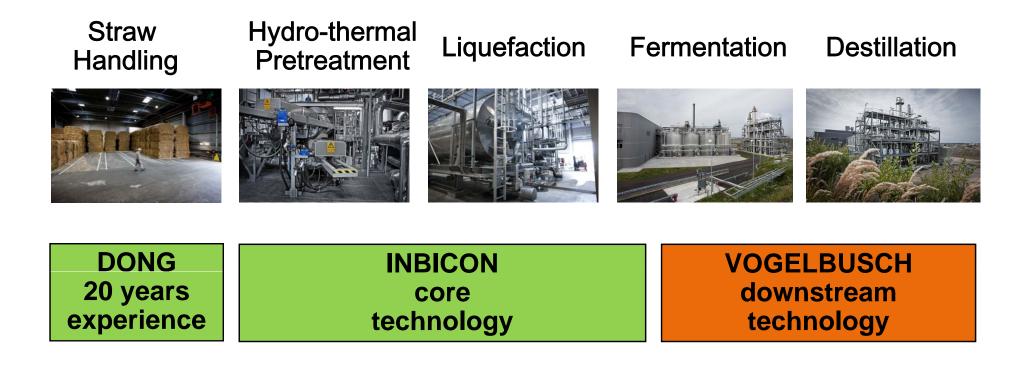
⁴ AD = Anaerobic Digestion

Source: Executive Summary Bioenergy – a Sustainable and Reliable Energy Source, IEA, 2009


SHOWCASE PROJECT: INBICON | Kalundborg | Denmark

Second generation demonstration plant

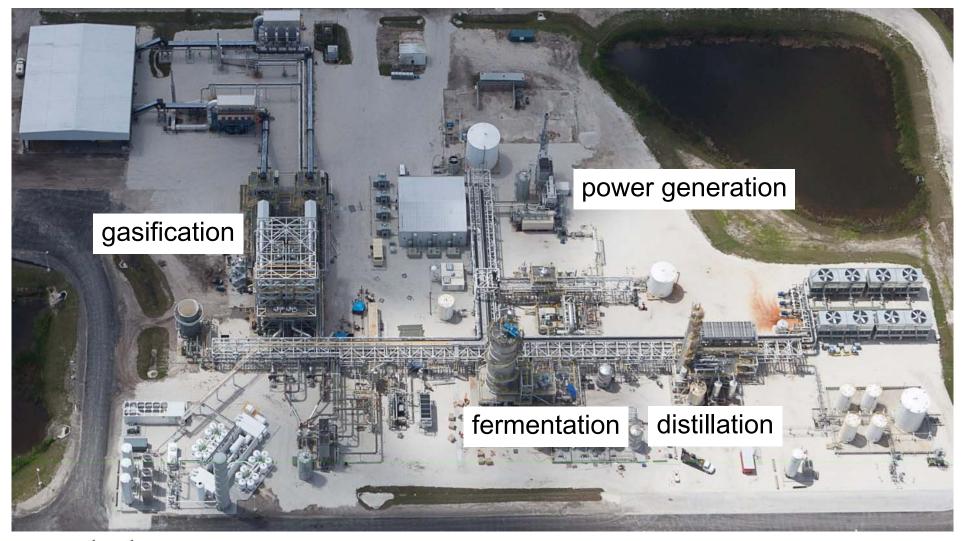
- Input: 30 000 t/y wheat straw
- Output: 5.4 million liters ethanol 13,100 t lignin pellets 11,250 t C5-molasses


SHOWCASE PROJECT: INBICON | Kalundborg | Denmark

SHOWCASE PROJECT: INBICON | Kalundborg | Denmark Combination of technology

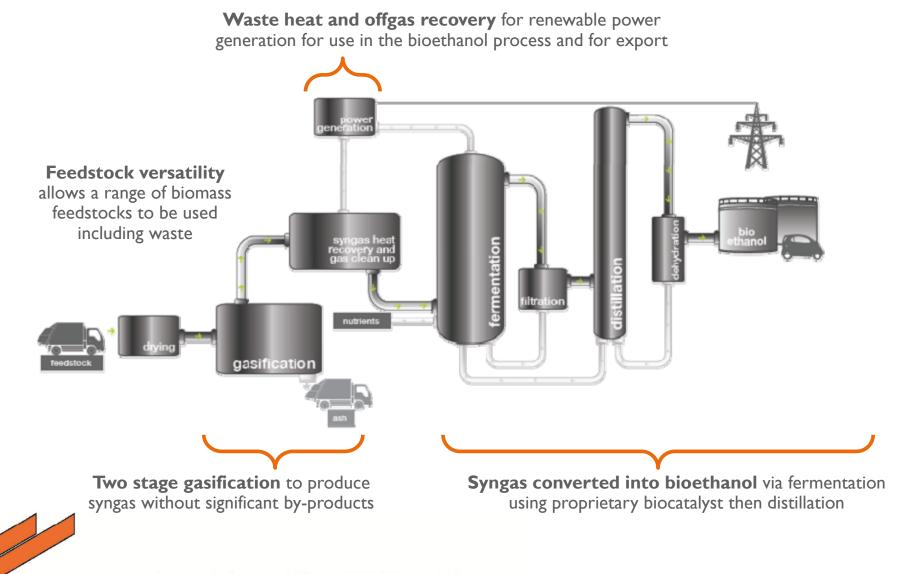
SHOWCASE PROJECT: INBICON | Kalundborg | Denmark Status Quo

- Proven technology for integral process on industrial scale – design capacity reached
- Steam explosion pretreatment no chemicals required
- 2G Bioethanol produced at spec
- Distribution of BIO95 2G fuel in Denmark by STATOIL
- Highly pure lignin pellets delivered to power plant
- C5 molasses delivered to biogas plant
- Design available for industrial scale plants


SHOWCASE PROJECT: INEOS Bio | Vero Beach, FL | USA

Second generation commercial plant

- Input: vegetative waste yard waste municipal solid waste
- Output: 30 million liters ethanol per year 6 MW gross electric power generation


SHOWCASE PROJECT: INEOS Bio | Vero Beach, FL | USA

SHOWCASE PROJECT: INEOS Bio | Vero Beach, FL | USA Process Overview: Bioethanol from waste combined with CHP

VOGELBUSCH Biocommodities

SHOWCASE PROJECT: INEOS Bio | Vero Beach, FL | USA Status quo

- Strong US government partnership
 - DOE grant & USDA loan guarantee
- EPC awarded to AMEC in November 2010
- Ground broken in February 2011
- Currently under commissioning

Syngas fermentation General facts

- Fermentation of syngas into ethanol based on the following reactions:
 - ► 6CO + $3H_20 \rightarrow C_2H_5OH + 4CO_2$
 - ► $2CO_2 + 6H_2 \rightarrow C_2H_5OH + 3H_20$
- Also other side reactions e.g. into acetic acid
- Microorganisms:
 - High productivity of ethanol
 - Low by-product formation
 - High tolerance against inhibiting substances in the syngas
 - e.g. Clostridium ljungdahlii

Syngas fermentation General facts

- Feedstock for gas fermentation can be derived from a broad range of sources:
 - Syngas of biomass (e.g. vegetative waste, yard waste)
 - Syngas of municipial wastes
 - Industrial waste gases (e.g. steel production)
 - Combination of several sources
- Waste streams converted directly on site into thermal or electric power

Comparison of different technologies

	Starch based	Cellulosic based	Syngas fermentation
Raw material	wheat / corn	wheat straw	biomass
Yield I alcohol / t raw material	390	180 (C6) 250 (C6 + C5)	200 - 260
Fermentation time hours	60 – 70	120 – 150	< 1
Alcohol content %vol in mash	11 – 16	5.0 – 10.0	3.0 – 5.0
Viscosity cP	30 – 50	200 - 400	5 – 10
Steam consumption t /1000 l alc Upstream (Hydrolysis) Distillation / Dehydration Evaporation / Drying	0.3 – 0.4 1.2 – 2.0 1.8 – 2.0	2.0 – 4.0 1.7 – 2.5 2.5 – 4.0	- 3.0 – 5.0 ???
By products	DDGS	Lignin C5 fraction	Thermal / electrical power

Cellulosic ethanol – Status quo

Achieved

- Stable, proven processes
- Plant in industrial design available
- Industrial product quality requirements

Unresolved

- Insufficient legal framework to support cellulosic ethanol
- High investment costs compared to G1 plants
- Still higher production costs compared to G1 product
- Raw material availablity and costs
- "First of its kind" Issues

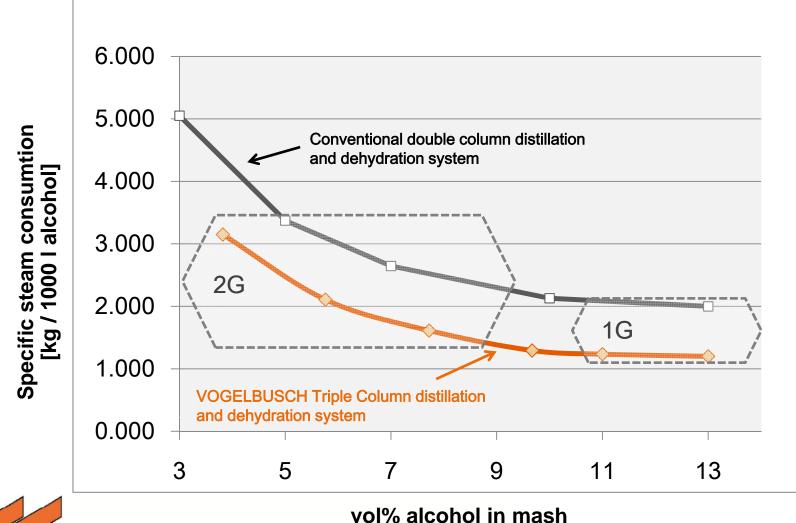
Special downstream processing solutions | For first and second generation bioethanol

> GIVEN CONTEXT Cutting process energy consumption improves the plant feasibility.

Technological measures to improve energy efficiency of cellulosic ethanol plant:

VB Multipressure distillation

 minimizing energy demand for distillation


 VB Zero steam evaporator heated by dryer's vapor

 minimizing energy demand for stillage treatment
 Saving energy = Saving costs!

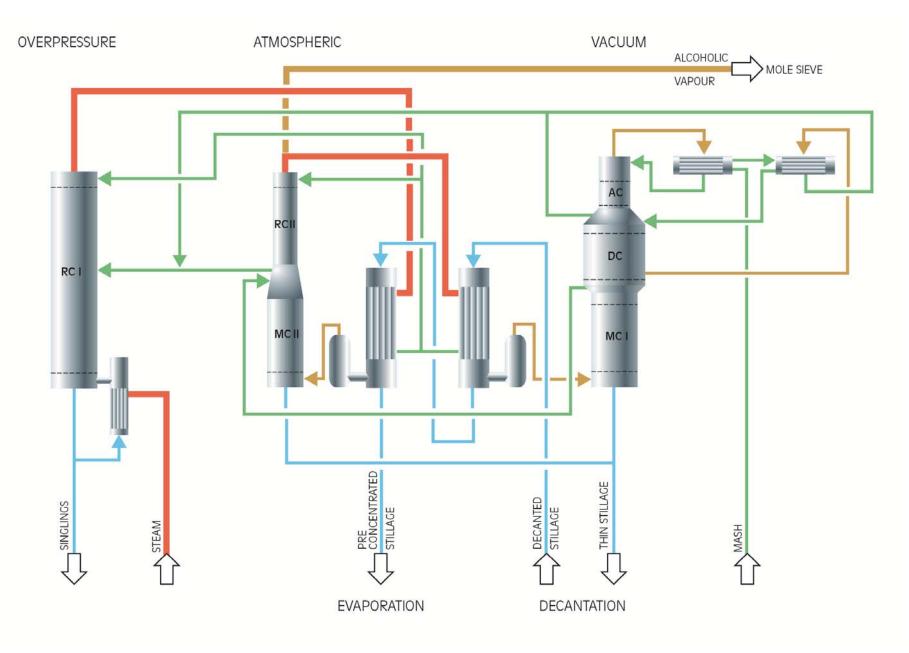
Vogelbusch Multipressure distillation I

| Influence of alcohol content in mash on steam demand

vol%

Vogelbusch Multi-pressure distillation II

| For first and second generation bioethanol


3 pressure stages for threefold usage of life steam	 vacuum atmospheric overpressure
Distillation in split mash columns	vacuumatmospheric
Rectification in split rectifiers	atmosphericoverpressure

Hydrous alcohol vapors fed directly to molecular sieve unit

Split mash columns can be used for separate feed streams (hybrid plants)

Vogelbusch Multi-pressure distillation III

Vogelbusch zero steam evaporator

For first and second generation bioethanol

- Evaporators are used for concentration of decanted residues from distillation
- Dryers are used for
 - DDGS in first generation plants
 - Lignin in second generation plants
- Dryer's vents are a valuable heating source for evaporation
- State-of-the art indirect heated dryers produce vapors with a wet bulb temperature of 90 – 98 °C
- Depending on wet bulb temperature 50 80 % of total dryer's vapors can be utilized as heating source in evaporators
- IG Plants: multi-effect evaporators are heated completely by dryer's vapors without any additional live steam
- 2G Plants: considerable reduction of life steam for evaporation of effluents

Conclusions

Energy efficiency

• Thermal integration by special downstream solutions can save up to 40% of live steam

Additonal income

- It's not enough to be thermally selfsufficient!!
- Additional income by selling (more) surplus energy

CO₂ reduction

• Considerable reduction of carbon footprint of the plant

ROI

 ROI for thermal integration in downstream typically within 2 – 3 years

Thank you for your attention.

For questions please contact Markus Lehr | LeM@vogelbusch.com

