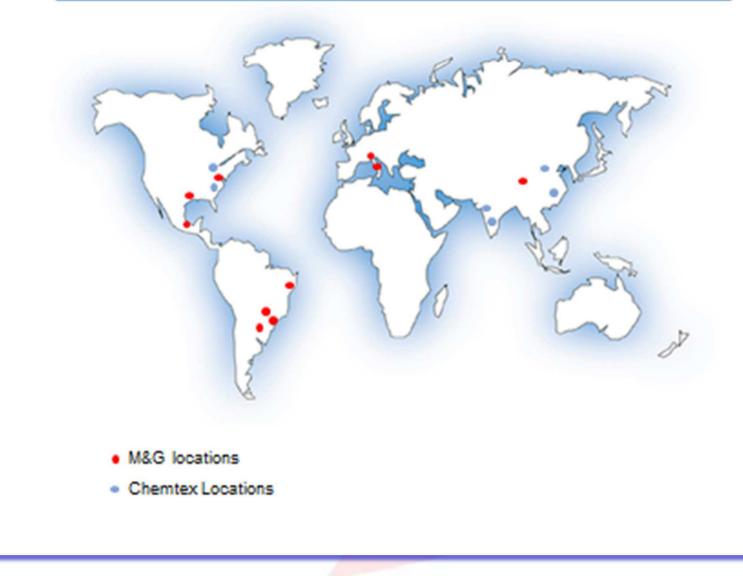


Chemtex Group Global Engineering and Project Solutions

PROESA® technology: the industrial solution for cellulosic ethanol projects

Stefania Pescarolo, Alessandra Frattini, Luis Oriani, Simone Ferrero Chemtex Italia - Mossi & Ghisolfi Group, Tortona (AL), Italy

> David Chiaramonti CREAR, RE-CORD, University of Florence, Italy


> > IEA – Vienna, 14/11/12 Stefania Pescarolo – Funding Project Assistant R&D Europe

Topics

ETHANOL

- 1. M&G group
- 2. M&G vision on renewables
- 3. PROESA® Technology: the history
- 4. PROESA® Technology: today

M&G – Worldwide Locations

Gruppo Mossi e Ghisolfi (M&G)

1950 - 1979	1979-2000	2000-2007	2007 & beyond
Packaging Manufacturing Phase	<i>Chemical Specialty Manufacturing Phase</i>	PET Expansion Phase	Renewables
M&G was founded in 1953 by Vittorio Ghisolfi in Tortona, Italy M&G offered customers packaging from HDPE and PVC	Group activities were integrated upstream in the development and production of special resin (PET) for food packaging applications	2000 Acquisition of Shell's PET business 2002 Acquisition of Brazilian controlled Rhodia-ster from Rhone Poulenc	2007 Testing and developmen of technology on lab scale for cellulosic ethanol 2008 Agronomic testing of energy crops
GRUPPO MOSSI & GHISOLFI • Privately held company with deep roots in manufacturing (PET and Acetates)		2003 Start up of world's largest PET production unit at Altamira (Mexico) 2004 Acquisition of the world class engineering group Chemtex from Mitsubishi Corporation	2009 Construction and tests on a continuous pilot plant for cellulosic ethanol
 2600 Employees worldwide A commitment to R&D (3 Cen USD 2.5 billion annual revenu Operations in the USA, Italy, 	e	2007 Start-up of highest capacity single line PET production plant in Suape, Brazil A Chemtex EPC Project	2011 Cellulosic Ethanol Demonstration Plant 15 mmgpy Start up

M&G R&D on renewables

Locations:

- Rivalta, ITALY
- Sharon Center, Ohio USA
- (Italy)

Scope of Activities:

- R&D on biofuel and biochemicals from renewable resources
- Operational pilot plants
- Agronomic evaluation
- Product applications support

M&G Vision on renewables

For both **Bio-Fuels** and **Bio-based Chemicals** the solution is based on the same key fundamentals:

- 1.Competitive pricing compared to products from Black Route (at oil prices in the USD \$60-\$70/Bbl range);
- 2.Environmentally sustainable with respect to Green House Gases: overall GHG sequestration balance (including biomass feedstock farming, transportation, chemicals or biofuels production processes);

3.Agronomically sustainable on the long term (i.e. no competition with food)

4. Profitable for farmers to grow biomass feedstock

Second generation technology: PROESA®

- More than USD \$200m investment into R&D since 2006.
- Extensive agronomic studies and supply chain logistics to support downstream plant development.
- ✓ A continuous 1 T/D Biomass pilot facility operational since 2009.
- ✓ A 40,000 ton/y Bioethanol demonstration plant being built in Italy (targeted completion end 2012).
- Intellectual Property multiple patent applications filed.
- Collaboration with Amyris, Genomatica, Codexis, Gevo and others for the joint development of drop-in fuels and bio-based chemicals using PROESA® Technology.
- Commitment of M&G/Chemtex and its partners to continuous development and improvement.
- Beta Renawables: joint venture Chemtex-TPG
- Strategic partnership making Novozymes the preferred enzyme supplier for Beta Renewables' current and future cellulosic biofuel projects.

RENEWABLES S.p.A.

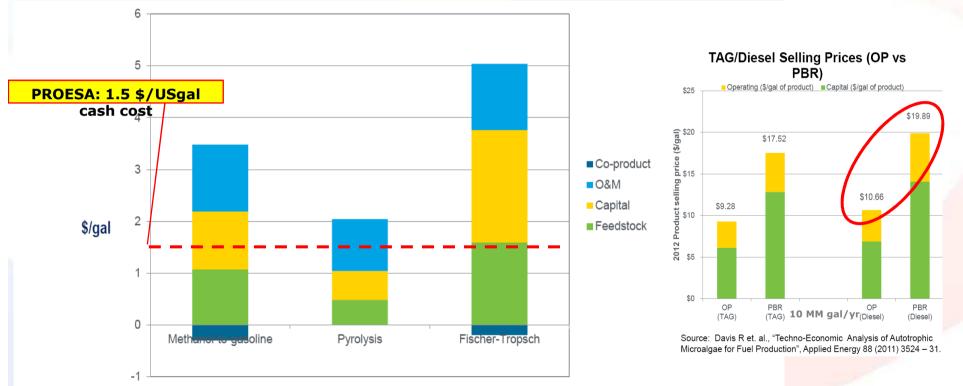
Financial:

- Lower capital investment as a result of minimum handling of biomass, simplified flow schemes and no special materials of construction;
- Cash cost of fermentable sugars at ~10 ¢/lb;
- ✓ Cash cost of ethanol of <\$ 1.50/USG (\$ 0.40/L);</p>
- Cost-effective at modest scale; short supply chains.

Flexibility:

- Feedstock-agnostic: energy crops, agricultural residues, organic waste, woody biomass, bagasse;
- Deployable worldwide;
- Pure lignin by-product;
- Power from lignin output to run plant.

Competitive and attractive economics <u>without</u> subsidies



PROESA[®] scale up

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy

Cost of Production for Hydrocarbon Biofuels

- Other economically viable technology routes for hydrocarbon biofuels exist, such as conversion of waste and plant oils, and sugar-to-hydrocarbons
- These costs are projected for the Nth Biorefinery Plant, after operation of initial commercial-scale Pioneer Plants

PROESA[®] scale up

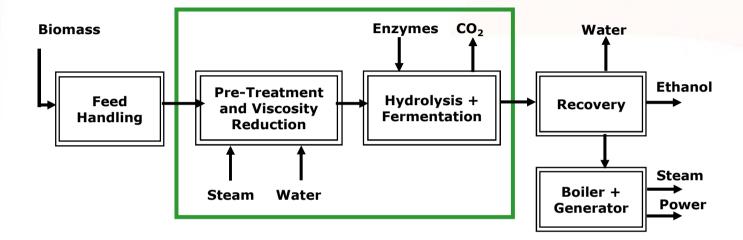
2006-2008

- Scouting of Technologies
- Agronomic testing on energy crops
- Generation of key inventions
 - Proof of unit operation in labs

- PILOT PLANT construction & start up (June 2009)
- Pilot Plant operation and Data gathering
 - Test of Plant flexibility using multiple biomasses

2011-2012

- Crescentino 40,000 ton/y INDUSTRIAL DEMONSTRATION ETHANOL PLANT
- Technology licensing



PROESA[®] - The Technology

The <u>Pillars</u> of PROESA[™] are:

- **1. Agronomy**: Field experimentation and best energy crops identified and characterized.
- 2. Biomass Pre-Treatment and Viscosity Reduction: Continuous process developed and piloted to produce costeffective and clean fermentable sugars.
- **3. Hydrolysis and Fermentation**: Unique hybrid SSCF process scheme yielding high ethanol concentrations
- **4.** Valorization of secondary streams and co-products. *12*

BENEFITS OF DEDICATED ENERGY CROPS

Agronomy

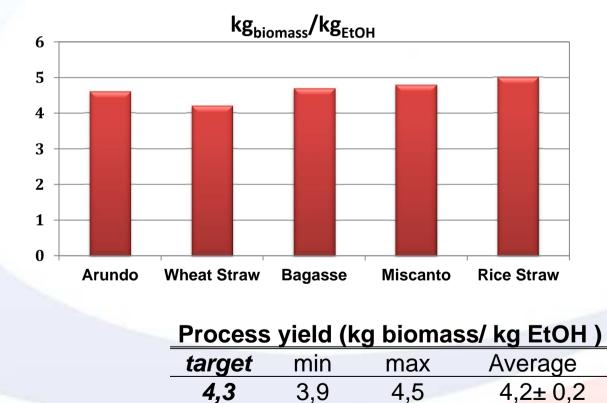
Compared and an analysis of the case of the second s		
Large-scale production	Low inputs	
Low production cost	High CO ₂ sequestration	
High fuel yield per hectare	Positive fossil fuel ratio	

Energy crops

- ✓ Arundo donax (Giant reed)
- ✓ Miscanthus giganteus
- Panicum virgatum (Switchgrass)

Agricultural and industrial residues

- ✓ Wheat straw
- ✓ Rice straw
- ✓ Corn stover
- ✓ Sugarcane bagasse

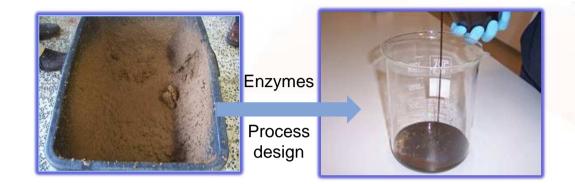

Woody species

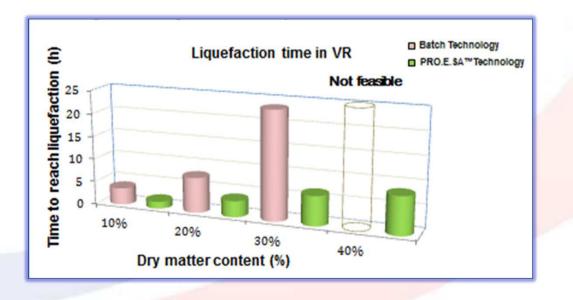
- Eucalyptus
- ✓ Poplar

- ✓ Shorter supply chains;
- Simple process and equipment solutions;
- \checkmark Closer to customer.
- ✓ What counts on biomass cost is logistics.
- Therefore it is WAY BETTER bringing the plant to the biomass rather than the biomass to the plant.
- If then the plant is fed with multiple feestocks, the optimization is complete.

PROESA® Pre-treatment

- New Pre-treatment Process has been successfully tested by Chemtex on the continuous pilot plant since June 2009 (covered by a patent application)
- Long run continuous tests (24h/day operation for more than a month) with several feedstock, for investigating process stability and system behavior
- 500 days (more than 3.500 h) of operation in total




Composition of the material entering the viscosity reduction section is constant.

PROESA® VR - Hydrolysis and Fermentation

A unique hybrid SSCF process

- Possibility to work at dry matter contents up to 40% (potential to yield 12% ethanol in fermentation).
- Material is liquefied after few hours (< 8 h) even at low enzyme load
- Efficient use of enzyme cocktails; flexible to multiple biotech solutions.
- Low energy consumption for agitation.
- Easy pH and temperature control
- ✓ Low Capex and Opex

Results confirm PROESA[™] hydrolysate can be a suitable sugar substrate for a wide range of fermentative route to biochemicals based products

The continuous Pilot Plant on 2G tech...

HOW IT OPERATES

- BIOMASS AGNOSTIC (12 kinds of biomasse tested)
- NO BIOMASS DRYING/GRINDING REQUIRED
- LOW LEVEL OF INHIBITOR (lower then in P.O.C.)
- NO USE OF CHEMICALS (only steam is added)
- REDUCED ENZYME LOADS
- RAPID LIQUEFACTION OF THE SOLID MATERIAL
- HIGH SOLID CONCENTRATION (> 40%) IN THE HYDROLYSIS STEP

Crescentino 2nd gen. 40.000 ton/y Ethanol Plant

- In April 2011, M&G and Chemtex broke ground for a 40 ktpa / 13.4 mmgpy nameplate cellulosic ethanol plant based on Arundo Donax & wheat straw.
- Crescentino will generate 13MW of "green" power from lignin to the grid and will sell ethanol to a major oil company.
- Design incorporates state-of-the-art wastewater treatment facility for maximum recycle of water.
- Start-up: end 2012.

Crescentino: some figures

- 40'000 Mtons bioethanol
- 13 MW power
- 300 pieces of equipment
- 1'500 tons of steel
- 1'400 tons of pipes and valves
- **30'000** m³ of concrete
- 18 km of underground piping
- 4'000 ha of lignocellulosic biomass
- (Arundo donax and/or agro-residues)
- More than **150 persons** involved directly

...a cost competitive, low carbon alternative to petroleum derived jet fuel and biochemicals in a short term horizon

