

The Biorefinery approach to production of lignocellulosic ethanol and chemicals from lignocellulosic biomass

IEA Bioenergy Conference, Vienna 13-14.11.2012

Gisle L Johansen

Senior Vice President R&D and NBD

gisle.l.johansen@borregaard.com www.borregaard.com

Biorefinery – a Business Model Based on Biomass

Borregaard's biochemicals are sustainable and environmentally friendly substitutes to petrochemicals

Borregaard is a global leader in bio based chemicals. Strong innovation efforts increase the value added to our customers.

(Still) The world's largest production of cellulosic ethanol

Global presence

Borregaard then and now

Karl August Kellner

- Competitive edge in 1889
 - cheap timber
 - cheap energy
 - cheap labor
- Austrian technology
- British capital

- High cost
 - raw materials
 - energy
 - labor
- Competitive edge in 2012
 - technology
 - market
 - innovation pipeline

Borregaard site in Sarpsborg, Norway

From paper mill to biorefinery

Further development of the biorefinery concept

High Cost/price

Low

BioMaterials

- Polymers
- Composites

BioChemicals

- Flavours
- Monomers
- Proteins
- Fine chemicals
- Speciality chemicals

BioFuel

- Bioethanol
- Biodiesel
- Biogas

BioEnergy

- Electricity/Heat
- Liquid Fuels
- Pellets

Low

Lignin from biomass - two alternatives

Borregaard BALI process:

Lignin specialty chemicals

Competing 2G processes:

Energy – heat and power

BALI™ process in a nutshell - pretreatment

Bagasse

Pretreated and "reactive" pulp

Water soluble lignin

Borregaard LignoTech World leader in lignin based products

Production

Norway, England, Germany Spain, Czech Republic, USA, South Africa, Brazil

Products

A broad range of dispersing and binding agents and other performance chemicals

Applications

- Construction
- Agro chemicals
- Animal feed
- Bricks & tiles
- Lead batteries
- Soil conditioner
- Mining
- Gypsum board

Bagasse mass balance (only C/H/L shown)

Bagasse mass balance (only C/H/L shown)

BALI™ process in a nutshell – fiber hydrolysis

Pretreated bagasse

Decomposition with enzymes yields high purity sugar in solution

Sugar is transformed to bioethanol or chemicals

Performance evaluation of cellulolytic enzymes

- Many factors affect yields in enzymatic hydrolysis and all need to be taken into account when evaluating and comparing results
 - solids and glucan loading
 - enzyme dosage (on solids or glucan? %w/w or %v/w?)
 - time
 - buffer and concentration of buffer (pH at end of hydrolysis measured?)
 - temperature (mostly at 50 °C, but more stable enzymes are emerging)
- Yields >100% (not uncommon as pretreatment and enzyme technology improves) mainly due to underestimation of glucan in the raw material analysis (main challenge is the 2-step quantitative analytic hydrolysis)
- A performance evaluation of feedstock/pretreatment combinations needs to be done on a case-by-case basis for every enzyme product studied due to differences in product formulation and composition.
- In the end only \$/kg sugar counts

DuPont Accellerase® DUET vs TRIO

BALI™ neutral pretreated bagasse

15% substrate/8.5% glucan loading 50 °C, 200 rpm 25 g total reaction mass sodium citrate buffer

Novozymes Cellic® CTec2 vs CTec3

BALI™ acid pretreated bagasse

15% substrate/9.7% glucan loading 50/53 °C (CTec2/CTec3), 200 rpm 28 g total reaction mass sodium citrate buffer

BALI™ produces clean hydrolysates

- BALI™ hydrolysates are easily fermentable to ethanol, indicating the absence of fermentation inhibitors
- Company A (chemical process):
 - "Borregaard hydrolysates were converted very efficiently"
- Company B (fermentation process):
 - "Results for conversion of the acid and neutral hydrolysates are the best we have ever observed"

Demonstration plant for bioethanol and green chemicals -in operation

Cellulosic ethanol Biochemicals

Lignin Chemicals

Building the first BALITM demonstration

- Demonstrate lignin grade/quality
- Serve partners
- Reduction of risk (CAPEX est)
- A real "mini plant", continuous process, scalable equipment (up to 50 m³ scale)
- Includes
 - lignin processing
 - continuous polysaccharide hydrolysis
 - fermentation capabilities
- Feed: 2MTDS/day
- Currently in operation
- Location: Sarpsborg, Norway
- Total cost approx 24 mill USD

Borregaard

Acknowledgements

Novozymes and DuPont Genencor for generous enzyme gifts

EuroBioRef

The research leading to these results has received funding (3.9 MUSD) from the European Union Seventh Framework Programme (FP7/2007- 2014) under grant agreement n° 241718 EuroBioRef

Biomass2Products

3.3 MUSD from the Norwegian Research Council (2009 – 2012)

BALI pilot plant

10 MUSD for construction of pilot plant received from Innovation Norway

